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Options for Additional Info 
on Wednesday 

•  Ruth and Quincey: Any HDF5 tutorial you 
want 

•  Katie : Lustre Striping and More detail on 
performance tuning for Lustre 

•  John : HDF5 for native speakers of NetCDF 
and HDF4 

•  Andrew: Lustre Monitoring FrameworkDavid 
Knaak: MPI-IO performance tuning for Cray 

•  Rob: More ROMIO and HDF5 tuning 
•  David & Noel: IPM profiling 
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Purpose of Workshop 

•  Need to define action plan to tune HDF5 
performance 
–  Learn how HDF5 is being used by current 

applications 
–  Understand where you are experiencing 

performance problems given use cases 
–  Understand root cause of performance problems 
–  Prioritize plan to fix problems 

•  Please provide your personal list of 
problems that you would like “fixed” 
–  Feel free to do some real-time editing of your ppt 

3




Application I/O Kernels to Measure Progress 
(Cannot improve what you don’t measure) 
•  IOR 
•  FLASH I/O 
•  Chombo HDF5 
•  Vorpal / 3DIO 
•  NetCDF4 tests (IPCC4, Randall Code) 
•  Cactus HDF5 Bench 
•  S3D 
•  What else? 

–  Work together with other procurements to collect 
tests to get good coverage 
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Strawman Action Plan 

•  Strawman Development Plan to 
improve HDF5 integration with 
NERSC platform 
– Based on NERSC apps experience 
– Not comprehensive 

•  does not include your experience/requirements 
•  Very NERSC-platform specific 

•  Please help us make this more 
responsive to your needs 
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A Few Performance Principles 
(some assumptions) 

•  Small writes are bad (aggregate to >1MB operations) 
•  Use wide striping on Lustre for parallel I/O 
•  Choose #stripes to be multiple of #clients 

–  Best to set striping before writing to file 

•  Use transaction sizes equal to stripe size 
•  Align writes to stripe boundaries 

–  Even if writes to file are sparse 
•  2-phase I/O to fix alignment issues 

–  # I/O clients equal to #OSTs assigned 
–  Reorganize I/O so that it is always aligned to OSTs (e.g. Data 

organized so Client #1 always handles transactions for same 
OST) 

6




Baseline Lustre Integration 
•  Issue: HDF5 has no direct access to Lustre tunable 

parameters 
–  Stripe width, number of stripes, stripe offsets 

•  Strategy: expose lustre tuning interfaces via H5P 
interface 
–  HDF5: has H5P interface for uniform access tunable 

parameters 
–  Lustre: has lustre_user.h that defines lustre-specific ioctls() to 

introspect and modify tunable parameters 

•  Benefits: first step to tuning HDF for Lustre 
–  Enable user I/O libraries to introspect and manipulate HDF 

interfaces and Lustre to tune for performance 
–  Enable HDF5 to auto-tune performance tunables based on 

Lustre parameters 
–  Autotuning 
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Ergonomic issues:  How do we 
expose tuning capabilities? 

•  Use Lustre-specific Virtual File Driver 
–  Automatically chooses good values for tunable 

params without user intervention 
•  Define Lustre-specific behavior in mpi-

posix and mpi-io VFDs (#ifdef) 
–  User code uses H5P interface to query and set 

Lustre parameters (and any HDF5 tunable 
parameters to match) 

–  Use new H5P interface to request auto-tuning of 
parameters  

•  Depend on MPI-IO hints? 
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Lustre File Striping 
•  Issue: Users usually forget to stripe file properly for 

parallel I/O 
–  Best performance if striping is an even multiple of number of 

client processors 
–  Correct striping choice usually indicated by how many clients 

open same file 
–  New Lustre 1.6 striping behavior will use same OST twice in 

striping (need to nail down independent stripes) 

•  Strategy: Use Lustre-specific H5P interfaces to set 
striping 
–  Set striping at file open 
–  Have lustre-specific VFD automatically choose good striping 

based on number of clients 
–  Have user request auto-tuning through H5P “auto-tuning” 

API call 
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HDF5 Object Alignment 

•  Issue: Lustre hates unaligned data 
–  HDF5 inserts various-sized data objects into file to conserve 

space by default 
–  Lustre performs poorly for unaligned writes 

•  Strategy: Use Lustre-specific ioctls() to set correct 
HDF5 tunable parameters for alignment 
–  Make HDF5 prefer stripe-sized objects 
–  HDF5 H5P_setalign() tunable parameter allows objects to 

automatically be aligned to Lustre stripe boundaries 
–  Lustre ioctls() enable HDF5 to find optimal alignment for 

objects (stripe boundaries) 

•  Benefits: 
–  Automatically set optimal alignment for HDF5 objects 
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I/O Performance Sensitivity 
to Transfer Size 

Transfer Size


2GB File Size, 80 Processors, 40 OSTs
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I/O Performance Sensitivity 
to Transfer Size 

Transfer Size


2GB File Size, 80 Processors 40 OSTs: Offset file start by 64k


G
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 Performance falls dramatically 

if you offset start of file by small 
increment (64k)
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Streaming Unaligned Accesses 
(not to pick on Lustre… GPFS suffers too) 

Effect of Block Alignment on GPFS Performance (each blocksize)
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HDF5 Object Alignment 

•  Issue: Lustre hates unaligned data 
–  HDF5 inserts various-sized data objects into file to conserve 

space by default 
–  Lustre performs poorly for unaligned writes 

•  Strategy: Use Lustre-specific ioctls() to set correct 
HDF5 tunable parameters for alignment 
–  Make HDF5 prefer stripe-sized objects 
–  HDF5 H5P_setalign() tunable parameter allows objects to 

automatically be aligned to Lustre stripe boundaries 
–  Lustre ioctls() enable HDF5 to find optimal alignment for 

objects (auto-tune for stripe boundaries) 

•  Benefits: 
–  Automatically set optimal alignment for HDF5 objects 
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HDF5 Metadata and Index 
block Tuning 

•  Issue: HDF5 hierarchical indices and metadata 
blocks 
–  HDF5 uses hierarchical indexing scheme and compact 

metadata to conserve space by default 
–  High-bandwidth I/O systems perform badly for small 

transactions (metadata cache helps, but physical layout can 
also be modified to favor aggregation of indices) 

•  Strategy: Lustre introspection to set 
–  Use Lustre ioctls() to find stripe size and stripe boundaries 
–  Set HDF5 tunable parameter for size of indexing blocks 

make it equal to Lustre stripe size 
–  Also set HDF5 tunable for metadata cache size to 

accommodate caching that is multiple of stripe size 
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HDF5 Index Blocks 
(B-tree indices) 
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HDF5 Index Blocks 

Flattened Represnetation


B-Tree index objects distributed throughout file

• Not-multiples of stripe-size

• Not stripe-aligned


Target larger (1MB sized)

Pad blocks to align them to stripe boundaries
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HDF5 Metadata and Index 
block Tuning 

•  Issue: HDF5 hierarchical indices and metadata 
blocks 
–  HDF5 uses hierarchical indexing scheme and compact 

metadata to conserve space by default 
–  High-bandwidth I/O systems perform badly for small 

transactions (metadata cache helps, but physical layout can 
also be modified to favor aggregation of indices) 

•  Strategy: Lustre introspection to set 
–  Use Lustre ioctls() to find stripe size and stripe boundaries 
–  Set HDF5 tunable parameter for size of indexing blocks 

make it equal to Lustre stripe size 
–  Also set HDF5 tunable for metadata cache size to 

accommodate caching that is multiple of stripe size 
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Other HDF5 Metdata Optimizations 
•  Issue: When HDF5 reads parallel file makes 

redundant requests for same metadata block at each 
client 

•  Strategy: Read metadata from master and broadcast 
to clients  

•  Issue: Processor “0” handles metadata 
–  Can create load-imbalance (Amdahl’s law hurts) 

•  Strategy: Use POSIX async (or some other async) 
method to hide metadata operations 
–  POSIX async I/O interface 
–  Dedicated “metadata” server process 

19




Parallel I/O: Strided Data Access 

•  Issue: Parallel I/O to shared file requires fine-grained 
strided data access patterns (undo domain decomp) 
–  perform poorly due to lock manager and small transaction 

sizes 
–  HDF5 not passing sufficient information to lower layers of I/O  

stack (MPI-IO or filesystem tuning APIs) 

•  Strategy: Describe intended pattern using MPI-IO 
hints or filesystem-specific hints 
–  Already plenty of code in HDF5 to use GPFS hints interfaces 

and data structures 
–  How do we provide such detailed hints to Lustre? 
–  Can we provide better hints to MPI-IO in the MPI-IO VFD 
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3D (reversing the domain decomp) 
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3D (reversing the decomp) 

Logical


Physical
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3D (stripe alignment issues) 

720 kbytes
 720 kbytes


Logical


Physical
 1024 Kbytes (Lustre Stripe Size 1MB)


Writes not aligned 

to block boundaries
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Parallel I/O: Strided Data Access 

•  Issue: Parallel I/O to shared file requires fine-grained 
strided data access patterns (undo domain decomp) 
–  perform poorly due to lock manager and small transaction 

sizes 
–  HDF5 not passing sufficient information to lower layers of I/O  

stack (MPI-IO or filesystem tuning APIs) 

•  Strategy: Describe intended pattern using MPI-IO 
hints or filesystem-specific hints 
–  Already plenty of code in HDF5 to use GPFS hints interfaces 

and data structures 
–  How do we provide such detailed hints to Lustre? 
–  Can we provide better hints to MPI-IO in the MPI-IO VFD 
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3D (stripe alignment issues) 

720 kbytes
 720 kbytes


Logical


Physical
 1024 Kbytes (Lustre Stripe Size 1MB)


Writes not aligned 

to block boundaries
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Amdahl’s Law Hurts 
(aggregate small metadata operations) 

DSL Speed 

HPC Speed 
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Common Physical Layouts 
For Parallel I/O 

•  One File Per Process 
–  Terrible for HPSS! 
–  Difficult to manage 

•  Parallel I/O into a single file 
–  Raw MPI-IO 
–  pHDF5 pNetCDF 

•  Chunking into a single file 
–  Saves cost of reorganizing data 
–  Depend on API to hide physical layout 
–  (eg. expose user to logically contiguous array even though it is 

stored physically as domain-decomposed chunks) 
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HDF5 Chunking 

•  Issue: Performance problems with non-uniform 
chunking 
–  Fully populated HDF chunks go to disk in a single write 
–  Partially populated chunks are written using sequence of 

small/strided writes 

•  Strategy: Write image of partially populated chunk in-
memory, then commit to disk 
–  Initial experiments by Shan show some performance 

benefits 
–  Still an issue for non-uniform chunking (defining non-uniform 

chunk sizes) 
–  Not all domain decompositions are regular (what to do?) 
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HDF5 Chunking2 (2-phase I/O) 
•  Issue: Chunking oriented towards creating contiguous 

objects based on the application’s domain decomposition 
–  Chunksize == local subdomain size 
–  However, Lustre experience indicates preference for chunks that 

are stripe-aligned and stripe-sized 

•  Strategy: Two phase I/O to subset of writers 
–  Define subset of clients as I/O aggregators (ROMIO) 
–  Reorganize data via MPI messages to I/O servers from other 

clients to be stripe-aligned (and clients always hit same OST) 

•  Options 
–  Make it work correctly in MPI-IO? 
–  Implement it ourselves in MPI-POSIX VFD 

•  Server-directed I/O (PANDA) approach 

–  Doing it in user-space is really hard 
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Other Stuff 

•  HDF5 Profiling layer 
– Quincey: history comparisons to see if 

property change had an effect on 
performance 

•  HDF5 restricted API 
•  Auto-tuning 
•  Going straight from description of 

datamodel (XML perhaps) to veneer API 
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We Want Your Input! 

•  This is not the final action plan 
– Just initial straw-man example of what we 

can target 
– We want your input 
– Action plan will change to incorporate your 

ideas, use-cases and experience 

•  Please tell us what your priorities and 
performance pain-points are 
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